If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-405=0
a = 1; b = 10; c = -405;
Δ = b2-4ac
Δ = 102-4·1·(-405)
Δ = 1720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1720}=\sqrt{4*430}=\sqrt{4}*\sqrt{430}=2\sqrt{430}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{430}}{2*1}=\frac{-10-2\sqrt{430}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{430}}{2*1}=\frac{-10+2\sqrt{430}}{2} $
| -9y-2(2-7y)+4=0 | | 5(-5+4x)=135 | | 16n=8/8=8 | | x^2-5x-55=10 | | 4g-5=11 | | 3(x-2)=111 | | 16-5y+5(-8-y)=0 | | 5x-2(3x-8)=26 | | 4g-5=8 | | -y+15-3(10y+3)=0 | | -2(4u-8)+6u=4(u+5) | | 100=6x+58 | | 1/215x-45=5x | | 4G+5-2a-9=44 | | -20-2(8-5y)+6y=0 | | 9+5(y-7)=15 | | (6x-1)=61 | | 1-2x=-5x+28 | | 2x-4-70=0 | | 25/2x=10 | | 12+4(-3y-1)-y=0 | | 9=29a | | (3x-10)+46=5x+4 | | (19x-2)+(16x+2)=105 | | 15d-6(2d-5)-7=0 | | 28=-23x | | 2*x=8,5 | | 100-7=n-17 | | 5x^2-7=-97 | | 7+x•-6=31 | | 11x+12=-12x-16 | | -3x+6=7x+166 |